银万研究:合成生物学产业链梳理
合成生物学(synthetic biology)是指在工程学思想指导下,对生物系统进行有目标的理性设计、改造甚至从头重新合成具有非自然功能的生命体,通过设计和改造人工生物系统赋予生物体新的功能,来达到特定目标。合成生物学是多学科交叉的产物。合成生物学可大致分为前端的设计组装、中端的改造筛选和后端的发酵生产,其中设计、构建和筛选是合成生物学技术的核心所在。合成生物学近年来发展迅猛,与21 世纪以来基因测序、基因编辑、DNA 合成、代谢路径研究、生物信息学以及大数据学科的进步息息相关。合成生物学是生命科学、化学、数学、计算机和工程学等多基础学科交叉的产物,要求合成生物学企业综合掌握各门学科,在技术方面提出较高的要求,构建较高的技术壁垒。
合成生物学类似于计算机编程,改造生命体相当于编写新的“程序”。合成生物学借助生命体高效的代谢系统,通过基因编辑技术改造生命体以设计合成,使得在生物体内定向、高效组装物质和材料。合成生物学类似于计算机编程,细胞是生命体的结构与生命活动的基本单位,而细胞代谢与基因表达密切相关,因此可以把基因组比作“造 物主”编写的“程序”,生命体的活动按照该“程序”运作,而人类通过生物技术和基因 技术的进步对基因的理解不断深化,直至能够自行通过基因编辑设计代谢途径,相当于对 “造物主”的“程序”进行反向编译,在理解“编程语言”后自行编写能够实现特定目的 的新“程序”。
生物制造是合成生物学的重要应用场景。合成生物学被广泛应用于各种产业,在推动科学革命的同时,合成生物学技术正快速向实用化、产业化方向发展。合成生物学技术应用涵盖平台开发、医药、化工、能源、食品和农业等重点领域,简单来看,合成生物学能够改造的生命体包括动物、植物、微生物(细胞),但是动物和植物都是更加复杂的生命 系统,以目前的技术手段难以实现理想的结果,因此通过改造微生物(细胞)来进行发酵 生产(即生物制造)成为合成生物学最先落地也是近年来最重要的应用场景。
一、合成生物相关优势
相比其他生产方式,生物制造的核心优势在于凭借助细胞工厂的高效代谢系统降低成本和减少排放。生产是通过若干物理过程或化学过程将原材料加工转化成产品的过程,以某些流程复杂的化工生产为例,从原材料到最终产物往往要经过数步化学反应,其中每一 步涉及的转化率、催化剂、设备折旧、能源消耗等因素都将增加生产成本,因此对于这些 生产过程,制造费用往往明显高于原材料成本,而如果能构建出高效的细胞工厂将原材料 转化成同样的产品,将有效降低成本,因为原材料到产物的一系列化学反应将在细胞内进 行(即借助代谢系统),只需要提供适宜发酵的条件,远比自行进行反应容易。打个比方, 想要通过化学反应将青草转化成牛奶,无疑是十分困难的,而将青草喂给奶牛再挤出牛奶, 显然更容易,本质是利用了奶牛的代谢系统。举个实际例子,华恒生物构建了以可再生葡 萄糖为原料厌氧发酵生产 L-丙氨酸的微生物细胞工厂,相比传统的生产方式,实现了降本 减排。根据中科院天津工业生物技术研究所统计,和石化路线相比,目前生物制造产品平 均节能减排 30%-50%,未来潜力将达到 50%-70%,这对化石原料替代、高能耗高物耗高 排放工艺路线替代以及传统产业升级,将产生重要的推动作用。
生物制造和传统发酵的关键区别在于菌种。传统发酵往往通过对野生菌种采取各种诱 变方式,选育出高产优质菌种,随着下游各领域对产品需求的多元化,天然存在的微生物 中缺乏所需产物的代谢途径,或其代谢途径调控复杂,所需产物难以实现过量积累。尽管 存在相对成熟的人工代谢调控方法—基因修饰如密码子优化、过量表达、竞争途径敲除等 和发酵条件控制如温度、pH、供氧量、培养基碳氮比、前体物质添加等,但是传统改造属 于静态调控,改造菌种往往遇到瓶颈。生物制造的核心在于用合成生物学技术构建高效细 胞工厂,借助编辑工具和生物元件进行代谢通路的移植或动态调控。将合成生物学工具应 用于定向进化,能缩短菌种定向进化周期,增加突变体筛选效率,将其应用于代谢工程, 在将生物系统作为一个整体进行工程改造前提下,通过动态控制各复杂途径表达量,可以迅速提升产品多样性。
二、合成生物未来发展
合成生物学的发展得益于多种底层技术的进步。合成生物学本身的发展和增长要归功于多种技术的融合,包括 DNA/RNA 设计和合成、基因测序和基因编辑等基础技术,以及一系列不断扩展的技术,如计算、生物信息学、多组学、人工智能、自动化、3D 生物打 印和精密发酵等。近些年,生命科学领域的一系列技术创新,如 CRISPR/Cas9 基因编辑、干细胞重编程和单细胞测序等,正在为合成生物学提供新技术和工具,这些基础技术和工 具的发展和应用加速了合成生物学的商业化落地进程。
Markets and Markets 预计 2026年全球合成生物学市场规模达到 307亿美元,对应2021-2026年 CAGR为26.5%。根据 Deep Tech,全球合成生物学市场规模 由 2016 年的 35.3 亿美元增长至 2021 年的 73.7 亿美元,对应 2016-2021 年 CAGR 为 83.6%,其中医疗健康领域是第一大应用领域且增速最快,2021 年全球医疗健康领域合成 生物学市场规模为 68.7 亿美元,对应 2016-2021 年 CAGR 为105.6%。此外,工业化学 品是医疗健康外第二大应用领域,2021 年对应市场规模为 18.2 亿美元。根据 Markets and Markets,2021 年全球合成生物学市场规模高达 95 亿美元(不同机构的统计口径不同, 导致市场规模有差异),该机构预计2026 年达到307亿美元,对应2021-2026 年CAGR为26.5%。
三、合成生物学在医疗健康领域的应用情况
目前合成生物学技术应用于医疗健康产业主要有两种方式:一种是对微生物进行设计和改造,使微生物可以生产某种药物分子或其本身作为活性药物,实现治疗疾病的功能:另外一种是基于合成生物学的工程化思维和设计理念,对哺乳动物细胞进行改造,使其具备相应的功能,如用于器官移植、细胞治疗和疫苗生产等。
生物药在医药市场中占据越来越重要的地位。生物制药是指从生物来源中制造、提取或半合成药品,早期主要是直接从动植物中提取,如牛胰岛素,随着现代生物技术在 20世纪 80 年代兴起,现代生物制药技术逐渐发展为以生物工程为主导、发酵工程为中心的包括细胞工程、酶工程的现代生物体系,由于改造基因和蛋白质的传统方式已经达到了技术和经济的瓶颈,合成生物学就成为关键的新工具。和传统的化学药相比,生物药属于大分子,结构复杂,理化性质不稳定,生产运输条件较高,研发和生产的难度、成本都较高,但是生物药的治疗靶点更为精确,经常能带来更好的疗效和更低的毒副作用。随着技术的进步,生物药研发和生产的难点被逐渐克服,可靠的功效使其在医药市场中的重要性不断提升。根据 Frost & Sullivan 预测(转引自奥浦迈招股说明书),全球医药 CDMO 市场规模将由 2020 年的 424 亿美元增长至 2025 年的 856 亿美元,其中生物药 CDMO 占比由42.5%提升至53.7%,对应全球生物药 CDMO 市场规模2020-2025年的 CAGR为20.7%;中国医药 CDMO 市场规模将由 2020 年的 317 亿元增长至 2025 年的 937 亿元,其中生物药 CDMO 占比由 28.7%提升至 48.9%,对应中国生物药 CDMO 市场规模 2020-2025 年的 CAGR 为 38.1%。
四、合成生物一级市场相关情况
2022 年中国合成生物学投融资方兴未艾。根据新道蓝谷及各公司官网,中国在合成生物学领域的投融资起步较晚,2015-2020 年,每年中国合成生物学领域投融资数量仅有个位数,直到 2021 年实现爆发,仅一年就有 16 例。2022 年国内合成生物学赛道依然备受关注,多家头部投资机构纷纷布局,蓝晶微生物、引航生物、中科欣扬、柯泰亚生物等企业相继完成一级市场融资,近岸蛋白、巨子生物、川宁生物等企业相继完成 IPO 登陆 A股。整体上看,产品研发公司的数量和融资额多于技术服务公司。
五、国外合成生物企业上中游环节较多且领先,主要集中在美国
Amyris 和 Ginkgo Bioworks 是国外合成生物学企业的标杆: Amyris 是合成生物学领域第一家在纳斯达克上市 (2010 年)的企业,同时也是平台型公司的鼻祖和典型代表,经过长期的产业探索,其逐步成为颇有影响力的法尼烯和长链碳氢化合物生产商。另一家代表性公司是 Ginkgo Bioworks,2021 年5月宣布以 175 亿美元的价格通过 SPAC 方式正式上市,2022 年完成对 Zymergen 的收购以整合 Zymergen 强大的自动化和软件能力,以及其在多种生物工程方法上的丰富经验来显著增强 Ginkgo Bioworks 的合成生物学平台。除此之外,其他合成生物学企业也大多来自美国。整体上看,国外使能技术类、平台类合成生物学企业较多且技术领先。
六、中国主要合成生物类公司
凯赛生物和华恒生物是国内合成生物学企业的标杆:凯赛生物以石油中的副产物正烷烃为原料,采用微生物发酵的方法生产长链二元酸,显著降低了成本和污染,是世界上首个使用生物法产品取代石油化学法产品的商业成功案例:华恒生物突破厌氧发酵技术瓶颈,在国际上首次成功实现了微生物厌氢发酵规模化生产L-丙氨酸产品,是行业内拥有厌氧发酵法生产 L-丙氨酸完整知识产权的优势企业之一。此外,巨子生物、轩凯生物、引航生物、首钢朗泽等一众国内产品类公司都取得了单个或多个合成生物学产品商业化的成功。
文章数据整合来源:中信证券研究部、中金公司研究部、wind,对此表示感谢!